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This assertion is supported by the fact that the 24- 
methylcholest-5,22-dien-3P-o1 was found in a diatom 
(which forms the basis of the food chain in the marine 
environment) and also in a number of invertebrates.16 
Similarly the presence of peridinin, a carotenoid charac- 
teristic of dinoflagellates, in the sponge Isis hippuris has 
led to the suggestion that this carotenoid could have been 
derived from the food chain.17 Recently it has been pro- 
posed that gorgosterol side chain (111) could have been 
derived from dinosterol (11) by a simple addition of a 
methylene group across the C-22,23 double bond.18 The 
isolation of 4-methylgorgostanol (I) along with dinosterol 
and 24-demethyldinosterol from the dinoflagellate G. fol- 
iaceum supports the proposed mechanism18 of the forma- 
tion of gorgosterol side chain from dinosterol. Very re- 
cently Professor Djerassi's group has also isolated 4- 
methylgorgostanol from the dinoflagellate Peridinium 
f ~ l i a c e u m . ' ~  

We hope to resolve the biosynthetic scheme of 4- 
methylgorgostanol through studies currently in progress 
in our laboratory. 
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Scheme I. Stereospecific Synthesis of 
Trans 4-Substituted cis-2,3-Epoxycyclohexanols 
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Scheme 11. Stereospecific Synthesis of 
Trisubstituted Cyclohexenols 
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backbone. Recent syntheses of the Prelog-Djerassi lactone 
by White' and Stork2 as well as the macrolide total 
syntheses by Masamune3 and Core? have elegantly dem- 
onstrated the strategy of employing cyclic systems as pre- 
cursors to chiral acyclic synthons. We wish to report the 
facile introduction of three chiral centers and the overall 
functionalization of five carbon atoms of a six-carbon unit. 
Our methodology is based on the stereospecific and re- 
giospecific functionalization of the readily available 1,3- 
cyclohexadiene monoepoxide 1 and the subsequent oxida- 
tive cleavage of the final cyclohexene derivative. This 
approach relies on repetitive stereocontrolled 1,4 openings 
of cyclic epoxyalkenes5 and hydroxyl-directed epoxidations. 

We have recently reported5 a significant ligand effect 
in the reactions of mixed cyanoalkyl cuprates with 1,3- 
cycloheptadiene monoepoxide. Previous studies6 of dime- 
thylcopperlithium and epoxide 1 revealed that both 1,2 and 
1,4 additions occurred as well as significant amounts of 
rearranged products. We have found that mixed cyano- 
cuprates such as 2 add stereospecifically (100% trans) and 
regiospecifically (1,4 addition >95%) to epoxide 1 in ether 
at  low temperatures (-78 to -40 "C) and in high yield (3a, 
R = Me, 95%; 3b, R = Ph, 6070)~ (Scheme I). Mixed 
cyanocuprates (2) are among the most stable organocopper 
reagents and can easily be prepared8 on a large scale from 

Stereospecific and RLegiospecific Methodology for the 
Synthesis of Chiral :Molecules 

Summary: Sequential trans 1,4-openings of cyclohexene 
epoxides and hydroxyl directed epoxidations provide gen- 
eral methodology for the functionalization of five carbon 
atoms of a six carbon unit. 

Sir: The formidable synthetic challenges associated with 
the total syntheses of macrolides and ionophores require 
efficient and general methods for the stereocontrolled in- 
troduction of substituents along a conformationally mobile 
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silyl enol ether, 11, in essentially quantitative yield. Com- 
pound 11 could be characterized spectroscopically, but did 
not survive purification by chromatography. 

As shown in Scheme 111, the all equatorial @-hydroxy 
enol ether 11 was desilylated to the aldol 12 (60-70'70) with 
1.5 equiv of KF in anhydrous methanol (room temperature, 
1 h). Aldol 12 was purified by column chromatography 
(silica, ethyl acetate) and subsequently dehydrated to cis- 
4-phenyl-6-methyl-2-cyclohexenone (13b; 10% HCl/THF, 
room temperature, overnight). 

In order to demonstrate that  our new methodology ul- 
timately can lead to acyclic chiral molecules, we subjected 
the dimethyl compound 1 la (R = Me) to oxidative cleav- 
age. The trimethylsilyl enol ether functionality allows for 
differentiation of the vinylic carbons in the acyclic prod- 
ucts. While ozonolysis of silyl enol etherdo and allylic 
alcohol derivatives'l is precedented, the ozonolysis of a 
molecule possessing both of these labile functionalities has 
not been clearly documented. The crude alcohol lla (R 
= Me) was first converted to its acetate (n-BuLi, EbO, -78 
"C; AcCl), which was directly subjected to ozonolysis (EhO, 
-78 "C). The ozonolysis mixture was quenched at  -78 "C 
with excess dimethyl sulfide and then washed successively 
with water and brine. The ether solution (dried over 
MgSO,) was treated with diazomethane and concentrated 
to a clear oil. Column chromatography of the crude reac- 
tion mixture (silica, petroleum ether/ether 3:l) yielded the 
ester aldehyde 14a (25% overall yield from lo), in which 
three chiral centers are fixed and the extremities of the 
six-carbon unit are differentiated. The common occurrence 
of the erythro-1,3-dimethyl diastereomer in many macro- 
lides and ionophores reinforces the need for simple and 
synthetically flexible routes to synthons such as 14. 

In summary, the methodology presented in this commu- 
nication contains several new and unprecedented reaction 
sequences. In particular, the availability of trans 4-sub- 
stituted cyclohexenols by the initial cuprate reaction allows 
for the stereospecific and regiospecific introduction of 
functionality a to the initially generated hydroxyl group. 
Other unique steps include (1) the use of a silyl enol ether 
double bond in the 1,4 addition to the epoxy alkene; (2) 
the subsequent transposition of the silyl enol ether group; 
and (3) ozonolysis of a p-oxysilyl enol ether system. Work 
is continuing in our laboratories on the synthetic applica- 
tions of this methodology to chiral natural products. 
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commercially available organolithium reagents and cuprous 
cyanide. The tran.s-l,4-cyclohexenyl systems (3) produced 
are the pivotal intermediates for the methodology reported 
here and can be converted to numerous intermediates 
stereospecifically. 

The stereospecific and hydroxyl-directed epoxidation 
of the trans-allylic alcohols 3 cannot be affected with a 
metal-catalyzed tert -butyl hydroperoxide oxidation. It has 
been shown by Teranishig that a quasi-axial hydroxyl group 
is required for such hydroxyl-directed epoxidations. We 
have found that m-chloroperoxybenzoic acid (MCPA) does 
yield the epoxides 4 in good stereochemical purity (-95%) 
and in high yields (85-9070). 

We have utilized the cis-epoxy alcohols 4 (R = Me, Ph) 
in two ways, as outlined in Scheme 11, in order to introduce 
another carbon substituent in a stereocontrolled and re- 
giospecific manner. In order to repeat the 1,4 addition to 
an epoxy alkene system, the equatorial hydroxyl group of 
4b was first converted to a mesylate (5b; 9570, MsC1, Et3N, 
CH2C12, 0 "C). Since direct elimination of the equatorial 
mesylate was not possible under basic conditions, 5 was 
converted to its coriresponding axial iodide (6b; 70%, NaI, 
refluxing methyl ethyl ketone), which was treated with 
DBN in refluxing T H F  for 12 h to obtain epoxycyclo- 
hexene 7b (60% 1. 'This scheme constitutes a general and 
unique approach to this class of compounds. When ep- 
oxide 7b was treated with 5 equiv of lithium methyl- 
cyanocuprate (2a) in ether (-78 to -40 "C, 3-4 h), cyclo- 
hexene 8b (85 70 ) was produced stereospecifically. 

An alternative strategy fo- the introduction of a second 
carbon substituent via an epoxyalkene is shown in Scheme 
11. Epoxy alcohols 4 (R = Me, Ph) were easily oxidized 
to the corresponding epoxy ketones 9 (8570, CrO,.Pyr,, 
CH2C12), which are not accessible from 4-substituted cy- 
clohexenones in a stereospecific manner by other methods. 
Epoxy ketone 9 WBS converted to its trimethylsilyl enol 
ether 10 (9670, LDA/THF, -78 "C; Me,SiCl), which un- 
derwent the 1,4-addition reaction with lithium methyl- 
cyanocuprate at --78 "C ( 5  equiv, 4-5 h) to produce a new 
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